| Infinite-order apeirogonal tiling | |
|---|---|
![]() Poincaré disk model of the hyperbolic plane  | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | ∞∞ | 
| Schläfli symbol | {∞,∞} | 
| Wythoff symbol | ∞ | ∞ 2 ∞ ∞ | ∞  | 
| Coxeter diagram | |
| Symmetry group | [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞)  | 
| Dual | self-dual | 
| Properties | Vertex-transitive, edge-transitive, face-transitive | 
In geometry, the infinite-order apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,∞}, which means it has countably infinitely many apeirogons around all its ideal vertices.
Symmetry
This tiling represents the fundamental domains of *∞∞ symmetry.
Uniform colorings
This tiling can also be alternately colored in the [(∞,∞,∞)] symmetry from 3 generator positions.
| Domains | 0 | 1 | 2 | 
|---|---|---|---|
![]() symmetry: [(∞,∞,∞)]  | 
![]() t0{(∞,∞,∞)}  | 
![]() t1{(∞,∞,∞)}  | 
![]() t2{(∞,∞,∞)}  | 
Related polyhedra and tiling
The union of this tiling and its dual can be seen as orthogonal red and blue lines here, and combined define the lines of a *2∞2∞ fundamental domain.

- a{∞,∞} or 




 = 


 ∪ 



 
| Paracompact uniform tilings in [∞,∞] family | ||||||
|---|---|---|---|---|---|---|
= =  | 
= =  | 
= =  | 
= =  | 
= =  | 
=  | 
=  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| {∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} | 
| Dual tilings | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ | 
| Alternations | ||||||
| [1+,∞,∞] (*∞∞2)  | 
[∞+,∞] (∞*∞)  | 
[∞,1+,∞] (*∞∞∞∞)  | 
[∞,∞+] (∞*∞)  | 
[∞,∞,1+] (*∞∞2)  | 
[(∞,∞,2+)] (2*∞∞)  | 
[∞,∞]+ (2∞∞)  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | |
| h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} | 
| Alternation duals | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | |||
| V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ | 
| Paracompact uniform tilings in [(∞,∞,∞)] family | ||||||
|---|---|---|---|---|---|---|
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| (∞,∞,∞) h{∞,∞}  | 
r(∞,∞,∞) h2{∞,∞}  | 
(∞,∞,∞) h{∞,∞}  | 
r(∞,∞,∞) h2{∞,∞}  | 
(∞,∞,∞) h{∞,∞}  | 
r(∞,∞,∞) r{∞,∞}  | 
t(∞,∞,∞) t{∞,∞}  | 
| Dual tilings | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞.∞.∞ | 
| Alternations | ||||||
| [(1+,∞,∞,∞)] (*∞∞∞∞)  | 
[∞+,∞,∞)] (∞*∞)  | 
[∞,1+,∞,∞)] (*∞∞∞∞)  | 
[∞,∞+,∞)] (∞*∞)  | 
[(∞,∞,∞,1+)] (*∞∞∞∞)  | 
[(∞,∞,∞+)] (∞*∞)  | 
[∞,∞,∞)]+ (∞∞∞)  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
| Alternation duals | ||||||
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
![]()  | 
|
| V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V3.∞.3.∞.3.∞ | 
See also
Wikimedia Commons has media related to Infinite-order apeirogonal tiling.
References
- John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
 - "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
 
External links
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.




































