| Szekeres snark | |
|---|---|
![]() The Szekeres snark  | |
| Named after | George Szekeres | 
| Vertices | 50 | 
| Edges | 75 | 
| Radius | 6 | 
| Diameter | 7 | 
| Girth | 5 | 
| Automorphisms | 20 | 
| Chromatic number | 3 | 
| Chromatic index | 4 | 
| Book thickness | 3 | 
| Queue number | 2 | 
| Properties | Snark Hypohamiltonian  | 
| Table of graphs and parameters | |
In the mathematical field of graph theory, the Szekeres snark is a snark with 50 vertices and 75 edges.[1] It was the fifth known snark, discovered by George Szekeres in 1973.[2]
As a snark, the Szekeres graph is a connected, bridgeless cubic graph with chromatic index equal to 4. The Szekeres snark is non-planar and non-hamiltonian but is hypohamiltonian.[3] It has book thickness 3 and queue number 2.[4]
Another well known snark on 50 vertices is the Watkins snark discovered by John J. Watkins in 1989.[5]
Gallery
The chromatic number of the Szekeres snark is 3.
The chromatic index of the Szekeres snark is 4.
Alternative drawing of the Szekeres snark.
References
- ↑ Weisstein, Eric W. "Szekeres Snark". MathWorld.
 - ↑ Szekeres, G. (1973). "Polyhedral decompositions of cubic graphs". Bull. Austral. Math. Soc. 8 (3): 367–387. doi:10.1017/S0004972700042660.
 - ↑ Weisstein, Eric W. "Hypohamiltonian Graph". MathWorld.
 - ↑ Wolz, Jessica; Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
 - ↑ Watkins, J. J. "Snarks." Ann. New York Acad. Sci. 576, 606-622, 1989.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.
